Problem with smoke - how to reduce?

cars were beginning to reveal its secrets to the outside world and show their offer, however, to this day, some car models are intended only for the richest people in the world. Luxury cars are a sign of prestige and good luck, w

Problem with smoke - how to reduce? Mazda smoking exhaust

Cars for the rich

Luxury car brand virtually since their inception are surrounded with an aura of mystery for average earners. Although over the years the exclusive, global brand cars were beginning to reveal its secrets to the outside world and show their offer, however, to this day, some car models are intended only for the richest people in the world. Luxury cars are a sign of prestige and good luck, while allowing very stand out in the crowd. Most of them are made of special materials and to achieve a surprisingly high speed. Another advantage of these cars is equipped with many different, sometimes very expensive gadgets.


Accidents while drunk

Driving after drinking can be dangerous even when guided bike. In the case of more complex machines, allowing to achieve a much higher speed, directing them under the influence of alcohol can be fatal. Despite the many social campaigns regarding the prohibition of driving under the influence of alcohol and strengthen penalties for drunk drivers, unfortunately, many of them still do not apply to this rule. Meanwhile, the management of a car under the influence of alcohol can lead to death of not only the driver and passengers, but also to the disappearance of completely innocent people, not even staying on the road during this event. Getting into the car under the influence of alcohol we create unnecessary risk.


History of electric motor

Perhaps the first electric motors were simple electrostatic devices created by the Scottish monk Andrew Gordon in the 1740s.2 The theoretical principle behind production of mechanical force by the interactions of an electric current and a magnetic field, Amp?re's force law, was discovered later by André-Marie Amp?re in 1820. The conversion of electrical energy into mechanical energy by electromagnetic means was demonstrated by the British scientist Michael Faraday in 1821. A free-hanging wire was dipped into a pool of mercury, on which a permanent magnet (PM) was placed. When a current was passed through the wire, the wire rotated around the magnet, showing that the current gave rise to a close circular magnetic field around the wire.3 This motor is often demonstrated in physics experiments, brine substituting for toxic mercury. Though Barlow's wheel was an early refinement to this Faraday demonstration, these and similar homopolar motors were to remain unsuited to practical application until late in the century.


Jedlik's "electromagnetic self-rotor", 1827 (Museum of Applied Arts, Budapest). The historic motor still works perfectly today.4
In 1827, Hungarian physicist Ányos Jedlik started experimenting with electromagnetic coils. After Jedlik solved the technical problems of the continuous rotation with the invention of the commutator, he called his early devices "electromagnetic self-rotors". Although they were used only for instructional purposes, in 1828 Jedlik demonstrated the first device to contain the three main components of practical DC motors: the stator, rotor and commutator. The device employed no permanent magnets, as the magnetic fields of both the stationary and revolving components were produced solely by the currents flowing through their windings

Źródło: https://en.wikipedia.org/wiki/Electric_motor